HYDRA-DS Ammonium & HYDRA-DS Nitrate Analyzers

HYDRA-DS Overview

- The HYDRA-DS Analyzers are a Family of Nitrogen Analyzers
 - T80 or LQ800 with interactive measurement channels
 - Single Integrated Sensor with multiple measurements
- Measurement of Nitrogen as Ammonium or Nitrate
 - HYDRA-DS-NH4
 - Ammonium as Nitrogen, NH₄+-N
 - HYDRA-DS-NO3
 - Nitrate as Nitrogen, NO₃-N

HYDRA-DS Overview

- Suggested Applications
 - Municipal Wastewater
 - Primary Clarifier
 - Aeration Basins
 - Secondary Clarifiers
 - Denitrification
 - Final Effluent
 - Environmental waters
 - Lakes and Streams
 - Agricultural Runoff

HYDRA-DS Overview

- The HYDRA Simplifies the Real Time Measurement of Ammonium and Nitrate ions
 - One Single Integrated Sensor
 - Digital Signal Conditioners for trouble free transmission
 - Easily replaced Electrodes
 - Built in Spray Cleaner reduces maintenance time
 - Analyzer performs corrections for interfering ions and pH compensation
 - All of these features provide the lowest Total Cost of Ownership

What is the HYDRA-NH4?

HYDRA-DS-NH4 Sensor

- Measures the Nutrient Load of Wastewater
- Rugged PVC Housing
- (3) DS80s in one body
 - Ammonium ISE
 - Potassium ISE
 - pH Electrode
 - Temperature sensor
 - Analog to Digital Signal Conditioners
- Integral Spray Cleaner

What is the HYDRA-DS-NO3?

* HYDRA-NO3 Sensor

- Tracks Nitrification Progress, NH₄→NO₃
- De-Nitrification, NO₃→N
- Rugged PVC Housing
- (3) S80s or DS80s in one body
 - Nitrate ISE
 - Chloride ISE
 - Optional pH Electrode
 - Temperature sensor
 - Analog to Digital Signal Conditioners
- Integral Spray Cleaner

T80 Transmitter for HYDRA-DS

❖ T80 Transmitter

- Used for the HYDRA-DS (NH4 or NO3)
- Automatic pH
 Compensation for Total
 NH₃/NH₄ calculation
- Corrects for Potassium Ion or Chloride Ion Interference
- 3 Configurable Relay
- (2) 4-20 mA Outputs

LQ800 Multi Channel Controller for HYDRA-DS

- LQ800 Multi Channel Controller
 - Used for the HYDRA-DS (NH4 or NO3)
 - Up to (2) HYDRA-DS with pH
 - Automatic pH
 Compensation for Total NH₃/NH₄ calculation
 - Corrects for Potassium Ion or Chloride Ion Interference
 - 8 Configurable Relay
 - (8) 4-20 mA Outputs

Where is the HYDRA-DS Used?

- Municipal Wastewater Treatment Plants
 - Primary Clarifier
 - Aeration Basins
 - Secondary Clarifier
 - De-Nitrification
 - Effluent
- Environmental Waters
 - Lakes, Streams, Rivers
 - Agricultural Runoff

Primary Clarifier

Primary Clarifier

- Nitrogen in municipal waste water is primarily Ammonia/Ammonium
- The HYDRA-DS-NH4
 measures the Total
 amount of NH₃/NH₄+, the
 Nutrient Load, going to
 the Aeration Basin
- Nutrient Load determines the
 - Aeration requirement of the basin
 - Activated Sludge requirement of the basin

Aeration Basin

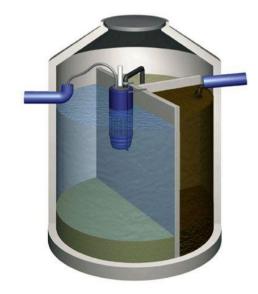
- The Nitrification Process changes Ammonium, NH₄+ into Nitrate, NO₃-
- The Microbes that perform this oxidation chemistry are suspended in the Activated Sludge
 - Adding Activated Sludge adds capacity
 - Increases Turbidity (TR80/TR82)
- Nitrification is an Aerobic process
 - High O₂ yields High Nitrification
 - The microbes respire and perform the oxidation
 - Adding Nutrient or Sludge increases the O₂ demand (DO82)

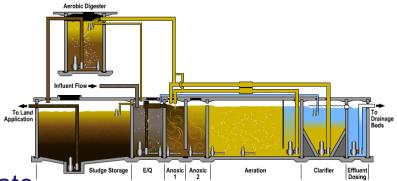
Aeration Basin

- Optimize the Nitrification
 - Real time NH₄⁺ → NO₃⁻
 - High Nutrient Load infers a High O₂ requirement
 - The Nitrification rate is proportional to the O₂ ppm
 - Adding O₂ uses more power but lowers the time needed for Nitrification
- Use Hydra-DS-NH4 to control aeration
 - Low NH₄+: minimal aeration even though O₂ is Low
 - Higher NH₄+: aeration under O₂ Sensor control
- Nitrification Cycle Complete
 - Reduce the Aeration for Anoxic Denitrification or send to the Clarifier

Secondary Clarifier

- Secondary Clarifier
 - All the NH₄⁺ has been converted to NO₃⁻
 - The Activated Sludge (AS) settles out and is either
 - Returned to the Aeration Basin (RAS) or
 - Sent to Waste (WAS)
- HYDRA-NO3 measures the Nitrate in the Clarifier in preparation of Anaerobic Denitrification
- ❖ In Denitrification the microbes are starved of O₂ and coerced to metabolize the Oxygen from the NO₃ releasing Nitrogen gas
 - Anoxic (low O₂)
 - Anaerobic (no O₂)





Anoxic Basin, SBR

Sequential Batch Reactor

- SBR cycles between Aerobic
 → Anoxic → Aerobic, all in one
 vessel or sequence
- Separate aerator and a mechanical mixer
- HYDRA-DS-NH4 and HYDRA-DS-NO3 are both used
- Nitrification (Aerobic)
 - Aeration ON
 - NH₄ ↓ NO₃ ↑
- Denitrification (Anoxic)
 - Aeration OFF, Mixer ON
 - NO₃ ↓ N₂ gas ↑
 - small amount NH₄↑
- Nutrient Removal Phosphate
 - Aeration ON
 - Sludge Absorbs PO₄
 - NH₄↓, NO₃↓, PO₄↓

Anaerobic Denitrification

- Nitrate from Secondary Clarifier is reduced to Nitrogen Gas
- Denitrification requires zero ppm Oxygen environment
- Methanol is used as a carbon source to drive the microbes to Denitrify by increasing the COD
- HYDRA-DS-NO3 allows feed forward control of the Methanol addition based on Nitrate Concentration and Flow rate.
- Accurate Methanol dosing saves money

Final Effluent & Environmental

- HYDRA-DS-NH4 and HYDRA-DS-NO3 can be used to monitor the Total Nitrogen in the effluent.
 - This is not an Approved method for reporting per 40 CFR Part 136 (NPDES, wastewater)
 - SM 4500-NO3- D (18, 19, 20th &2000) is the ISE based Method
 - It requires sampling and the addition of a conditioning reagent to eliminate interferences from Chloride, Nitrite and bicarbonate.
- The HYDRA-DS-NH4 can be used to monitor the agricultural NH₄+ run off into Lakes and Streams

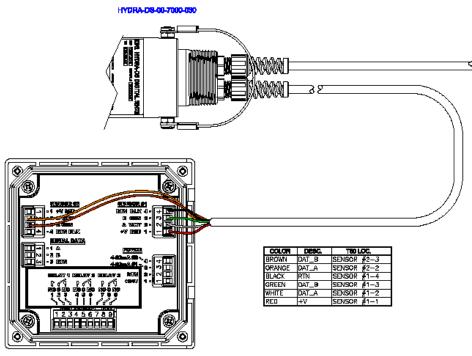
Serviceable Components

- The HYDRA-DS sensor is designed with few serviceable parts
 - (3) Easily replaceable electrodes
 - Spray Nozzle with wrench flats and ¼-20 thread
 - Screw off Sensor Guard with air purge hole, eliminates trap air bubbles
 - ¼" Compression Fitting on Air Feed Line

Electrode Replacement

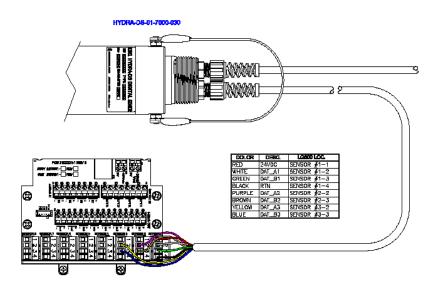
- Remove the Sensor Guard, rinse the electrodes with fresh water and then tamp dry with a paper towel.
- Using the supplied Insertion Tool unscrew the electrode to be serviced.
- * Repair or replace the electrode.
- Apply a thin film of o-ring grease to the o-rings of the serviced/new electrode and a thin coat to the inside rim of the SS tube.
- Place the electrode into the Insertion tool and thread the sensor into the housing.
- Replace the Sensor Guard.

- Mount the Analyzer within 30 ft of the sensor's installation point.
- Connect a solenoid controlled ¼" air line to the HYDRA tube fitting. (feed the air tube through the Immersion Assembly)
- Connect the immersion assembly (1 ½" FNPT) to the HYDRA Sensor.
- Insert the sensor into the tank and attach the HYDRA using the Handrail Mounting Kit



❖ T80 Wiring

T80 DUAL CHANNEL TRANSMITTER


 Check the default Configuration, Cleaning Cycle, Alarm, Outputs, in the Instruction

Manual, adjust if necessary.

♣ LQ800 Wiring :

 Check the default Configuration, Cleaning Cycle, Alarm, Outputs, in the Instruction

Manual, adjust if necessary.

- The HYDRA is up and running
 - The Air Blast spray cleaner will actuate once every hour for 15 seconds to keep the measuring electrodes clean
 - Wait several hours for the sensors to equilibrate to the Process conditions
 - Verify readings versus a laboratory test and Standardize the reading if necessary
- Visually inspect the sensor for coatings weekly and verify calibration versus laboratory measurement.

Electro-Chemical Devices

Thank You,

Go to www.ecdi.com for Data Sheets/ Instruction Manuals/ Presentations/ Press Release Packages

For over 40 years Electro-Chemical Devices has been a recognized leader in industrial process instrumentation:
Liquid Analytical Analyzers, Controllers, Transmitters, Sensors and Electrodes.

Electro-Chemical Devices 1500 N. Kellogg Dr. Anaheim, Ca 92807 www.ecdi.com Phone: +1-714-695-0051 +1-800-729-1333 Fax: +1-714-695-0057 email: sales@ecdi.com

